Look to my Lead: How Does a Leash Affect Perceptions of a Quadruped Robot?

Parth Chonkar¹, Geethika Hemkumar¹, Huihai Wang², Daksh Dua¹, Shikhar Gupta¹, Yao-Cheng Chan³, Justin Hart¹, Elliott Hauser³, Reuth Mirsky⁴, Joydeep Biswas¹, Junfeng Jiao², and Peter Stone¹

Abstract—Emerging applications requiring robots to operate in close proximity to people have mandated an understanding of how to enable graceful robot navigation in shared spaces. Existing social navigation research mainly observes a person or group walking past a single, independent robot. Consider the relationship between a dog and a handler carrying its leash. The emergence of widely-available quadruped robots - often conceptualized as robot dogs - opens a variety of interactions by transferring the canine metaphor to the area of social navigation. This research shifts focus from people walking past a single robot in a shared space to people walking past human-robot dyads; where the robot takes on the role of a dog. In this study, participants see each of five conditions, in which the robot is presented differently. The conditions are: “Fully-Autonomous” - in which the robot traverses the hallway by itself, “Remote-Controlled” - in which the a researcher follows the robot while holding a controller, “Companion” - in which a researcher walks alongside the robot, “Leading” - in which a researcher follows the robot while grasping a service dog harness, and “Guided” - in which a researcher measures their attitudes towards the robot in the interaction. The results of this work are promising. Though a questionnaire administered between study conditions asking participants to rate their perceptions of the robot yields few statistically-significant results, a questionnaire administered at the end of the study asking participants to compare the conditions to each other provides significant differences in how the participants rate the robot.

I. INTRODUCTION

The emerging availability of quadruped robots (often called robot dogs) opens a variety of interactions in which the robot is presented not in solo but as part of a human-robot dyad. People are used to seeing dogs with handlers: pet owners, service dogs users, and others. This work observes the reactions of study participants after they have passed a Boston Dynamics Spot in a hallway when the robot has been placed in one of five cynomorphic roles. These roles are: a Fully Autonomous mode, where the robot navigates the environment without a handler; a Remote-Controlled mode, where the handler follows the dog while holding a controller; a Companion mode, where the handler walks side-by-side next to the robot without any controller or leash; a Leading mode, where the robot wears a service dog vest with the handler holding a guide dog harness; and a guided mode, where the handler holds the robot by a leash.

Interactions in this work take place in a test hallway constructed for social navigation experiments. The study is set up as a five condition intraparticipant design, in which each participant sees each condition. In every condition, the robot operates fully-autonomously; running a custom social navigation stack developed for this experiment. The robot is programmed to detect which side of the hallway the study participant is on — modeling the hallway as three “traffic lanes” — and to move to the opposite side of the hallway in order to allow the participant to pass. After each interaction, participants respond to a questionnaire including measures from Godspeed Questionnaire [1] as well as additional measures relating to potential robot deployments from our research team. This work seeks to provide novel contributions to the existing literature on factors influencing human perception and acceptance of robots; and to inform the design, development, and deployment of autonomous service robots — quadrupeds in particular — in urban spaces where they are likely to result in handler-robot-pedestrians encounters.

This study continues a trend in Social Navigation and HRI more broadly of expanding beyond dyadic interactions into more complex configurations of humans and robots [2]–[6]. As robot deployments become more common, there is a growing recognition that HRI has an ethical duty to expand its scope to include all people potentially impacted by the robot’s presence [7], [8].

II. RELATED WORK

This study is designed to inform social navigation research on the topic of robots accompanying a human handler by observing reactions to a human-quadruped robot dyad.
Social Navigation in Robots Social Navigation is a well-established task in HRI centered upon enabling robots to perceive, react to, and conform to social norms of movement [9], [10]. Some significant work on this task has examined collision avoidance [11]–[13], comfort [14]–[16], smoothness of interaction [17]–[19], effort invested [?], [20] and other objective and subjective measures of social acceptability when pedestrians and a mobile robot move in a shared space. Social Navigation research often implements autonomy based upon identifications of social cues or socially-informed predictions of human movement [21], [22], and has even progressed to studies of robot ability to (socially) signal navigational intentions [13], [23]–[26]. Social Navigation as a whole is deeply informed by empirical findings about [27]–[30], models of [31]–[33], or training data containing [34]–[36] human social navigation norms. This study provides empirical findings of human perception and reaction to quadruped service robot encounters that can inform future research.

Perceptions of quadruped service robots The relative dearth of HRI studies of quadruped platforms in service applications means that public perceptions are poorly understood, even as they are entering wider use and visibility. Moreover, media portrayals of quadruped robots, which have been shown to influence perceptions of robots [37], have unknown impacts these perceptions. Media coverage likely to influence public perceptions includes general interest pieces on “robot dogs” (often with an alarmist tone; e.g., [38]), news coverage and research reports on deployments by public health and safety organizations [7], [39], and these platforms’ growing use in marketing campaigns, such as the 2022 Samuel Adams Superbowl ad featuring Boston Dynamics Spot [40]. The longer this gap in research persists, the more difficult it will be to identify and characterize changes to and influences upon perceptions of service quadrupeds, and to articulate how they vary across cultures and within subcultures [41].

HRI of Quadruped Service Robots and Canine Metaphors

Quadruped platforms intuitively suggest canine interaction metaphors and usage. Indeed, one of the most developed areas of research has been the study of their use as guide dogs to assist visually impaired users with navigation [42]–[47]. Related research specifically targeting assistive use cases, but employing canine metaphors; includes cynomorphic and general zoomorphic expressions [48]–[50], leash-based interfaces [43], [51], and dog-inspired interaction design [52], [53].

Service-Robot-Pedestrian Encounters

There is a growing literature in HRI and adjacent fields — such as smart cities — regarding pedestrian-robot interaction; much of it very recent [54]–[59]. In light of this recency, many studies have adopted an exploratory approach [60]. Researchers outside HRI have also begun to examine these issues; often from critical, ethical, or justice-focused perspectives [8], [61]–[65]. This work builds upon and is motivated by work on long-term autonomy [66]–[68], which has increased the number of human-robot encounters.

While the literature around encounters — as opposed to the direct interaction that is the traditional object of HRI studies — continues to expand, encounters with quadruped service robots remain poorly understood. This represents an important gap in current knowledge, which is particularly urgent to address as quadruped deployments become more common, and in light of the inherent differences in perception of robots by platform and style of locomotion.

III. A System for Autonomous Hallway Passing

For this study, the robot’s behavior should be consistent across trials, ensuring that all participants have similar experiences. To accomplish this a custom social navigation stack has been developed. The social navigation stack assumes that the study participant begins at one end of a test hallway set up in our laboratory, with the robot beginning at the other end. The participant and robot, each walking to the opposing end of the hallway, will pass at some point. The system divides the hallway into three traffic lanes (similar to [25] and [?]). The robot navigates by following one of these lanes, always starting in the middle lane. When the robot comes within a threshold distance of the participant (8.5m; hand-tuned for this study), it shifts to the lane that is on the opposite side of the hallway of the participant, making room to pass. See Figure 1.

A. Robot Platform

For the experiment, the Boston Dynamics Spot robot is equipped with a laptop (Ryzen 9 5900HS, RTX 3060) running Ubuntu 21.10 and ROS Noetic in a Docker container, a Velodyne VLP-16 LiDAR and a Microsoft Azure Kinect point cloud camera. The robot, as equipped for the study, can be seen in Figure 2.

B. Navigation

The robot is localized using an implementation of Episodic non-Markov localization (ENML) [69] using a map of the hallway area. Navigation goals are given to the robot as ROS twist messages, translated to the Spot’s protocol using the Clearpath Spot ROS Driver¹. Visualization of the robot’s state information is provided to robot operators (when initially setting up the robot) through Robofleet WebViz [70], a browser-based visualizer that connects to ENML.

¹https://github.com/clearpathrobotics/spot_ros
The hallway is modeled as three traffic lanes, as illustrated in Figure 1. The hallway is 1.8m wide, and the lanes are modeled as lines, each 0.6m apart, with one lane in the middle of the hallway. The robot navigates by choosing waypoints that are 2.75m in front of it on the lane that it wishes to navigate on. Thus, if the robot is continuing on the same lane, it is 2.75m ahead on the same lane. If the robot is shifting lanes, it is 2.75m ahead on the lane that it is shifting into. This distance is hand-tuned to produce a smooth-looking lane-shifting behavior.

C. Pedestrian Detection and Control Algorithm Behavior

To detect people in the hallway, the navigation stack uses the Azure Kinect Body Tracking SDK. The SDK provides the pose of the person relative to the camera as a track consisting of landmarks on the body. The chest is transformed into the global frame using the ROS TF2 service. The distance of this landmark from the left or right wall is computed in order to determine which side of the hallway the pedestrian is on. When the robot comes within 8.5m of the study participant, it shifts lanes to the lane opposite that it is shifting into. This distance is hand-tuned to produce a smooth-looking lane-shifting behavior.

D. Questionnaire

At the end of all five conditions, a final questionnaire is administered asking participants to compare conditions on a subset of the questions administered between rounds. The scales are: “Doglike,” “Friendly,” “Autonomous,” “Safe,” “Under control,” “Comfortable to get close to,” “Comfortable seeing walk around an office,” and “Comfortable seeing providing delivery services.”

V. RESULTS

The results for questionnaires administered between trials yield few statistically-significant results. The scale “Remote-Controlled - Autonomous” is statistically significant by a one-way Analysis of Variances (ANOVA) ($F_{4,125} = 14.073$, $p < 0.001$). Using the Tukey post-hoc criterion, only contrasts against the “Remote-Controlled” (higher is more autonomous) condition are significant (all at $p < 0.001$;
mean difference: “Fully-Autonomous” - 1.769, “Companion” - 1.846, “Leading” - 1.423, “Guided” - 1.615). The scale “Unconscious - Concious” is statistically significant ($F_{1,125} = 4.428, p = 0.011$). Using the Tukey post-hoc criterion, most of the contrasts against the “Remote-Controlled” (higher is more autonomous) condition are again significant (mean difference: “Fully-Autonomous” - 1.038, $p = 0.33$; “Companion” - 1.192, $p = 0.009$; “Leading” - 0.808, $p = 0.161$; “Guided” - 0.923, $p = 0.077$).

Results for questionnaire administered at the end of the study are mostly significant, however. For the end questionnaire, participants are asked to rank the conditions against each other. There is one small bug in the way that this ranking was administered, in that it is possible to (and participants did) give two conditions the same ranking. Rankings can be seen in Figure 4. Statistical significance is computed using the Friedman Test. From these results, it can be seen that the “Guided” and “Leading” conditions are viewed as the most “Doglike”; the “Fully-Autonomous” condition is seen as the most autonomous; and the “Remote-Controlled,” “Leading,” and “Guided” conditions are seen as the most safe. “Remote-Controlled” is seen as the most under control, but participants are most comfortable getting close to the “Guided” and “Leading” robots.

VI. DISCUSSION

The results of this study indicate that by placing the robot contextually into different handler-canine roles that participants’ perceptions of the robot on several important metrics can be changed. Importantly, it can be seen that pedestrians can be made to feel safer and more comfortable getting close to quadruped robots that are placed into traditional handler-canine roles, such as being walked on a leash or in service dog gear. It would take many study participants to extend this study to an inter-participant design, but this may help to increase the contrast in ratings between conditions.

This work serves as a starting point into more extensive research on quadruped social navigation that is in the planning phases, wherein there are plans to place quadruped robots into useful roles such as guiding the blind or doing jobs guided on a leash. These results indicate that there is the potential for quadruped robots to be well-received in these roles.

REFERENCES

S. Saegusa, Y. Yasuda, Y. Uratani, E. Tanaka, T. Makino, and J.-Y. J.
I. Papadopoulos and C. Koulouglioti, “The influence of culture on
S. Lekach, “Boston dynamics robots let loose with afterwork beers
Z. Chen, T. Fan, X. Zhao, J. Liang, C. Shen, H. Chen, D. Manocha,
U. Bruckenberger, A. Weiss, N. Mirmir, E. Strasser, S. Stadler, and
by graph convolutional networks with attention learned from human
gaze,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset
(SCAND): A Large-Scale dataset of demonstrations for social
May, 2022. [Online]. Available:
through multi-hop graphs,” in 2020 IEEE/RSJ International Conference
S. ˇSabanovi´c, “We’re in this together: Social robots in group,
organizational, and community interactions,” in Proceedings of the 8th
International Conference on Human-Agent Interaction, ser. HAI ’20.
[Online]. Available:
K. Hardeman, “Encounters with a seemingly autonomous sidewalk
robot deployment data,” in Proceedings of the 2018 IEEE/RSJ International Conference
179–180. [Online]. Available:
http://dx.doi.org/10.1109/ACCESS.2021.3049426
H. Kant, “Simplistic robot dog of our dystopian dreams,”
K. Hunter, M.-C. Lim, R. Schubert, A. Erickson, J. Bailenson,
G. Bruder, and G. Welch, “Walking your virtual dog: Analysis of
awareness and proxemics with simulated support animals in
augmented reality,” in 2019 IEEE International Symposium on Mixed
A. Xiao, W. Tong, L. Yang, J. Zeng, Z. Li, and K. Sreenath,
“Robotic guide dog: Leading a human with Leash-Guided hybrid
T.-K. Chuang, N.-C. Lin, J.-S. Chen, C.-H. Hung, Y.-W. Huang,
Trail-Following robotic guide dog in pedestrian environments for
people who are blind and visually impaired - learning from virtual
[Online]. Available:
S. Saegusa, Y. Yasuda, Y. Uratani, E. Tanaka, T. Makino, and J.-Y. J.
Chang, “Development of a Guide-Dog robot: Leading and
recognizing a Visually-Handicapped person using a LRF,” Journal of
Advanced Mechanical Design, Systems, and Manufacturing, vol. 4,
[Online]. Available:
M. Giásci, S. Szakadát, and A. Miklósi, “What could assistance
robots learn from assistance dogs?” in Bio-Inspired Models of
B. L. Due, “Interspecies intercorporeality and mediated haptic
sociality: distributing perception with a guide dog,” Visual Studies,
evaluation of affective expressions of a zoomorphic robot,” in Social Robotics.
V. Sauer, A. Sauer, and A. Mertens, “Zoomorphic gestures for
communicating robot states,” IEEE Robotics and Automation Letters,
A. Singh and J. E. Young, “A dog tail for utility robots: Exploring
I. Papadopoulos and C. Koulouglioti, “The influence of culture on
S. Lekach, “Boston dynamics robots let loose with afterwork beers
in super bowl ad,” https://
maschalke.com/video/boston-dynamics-sam-adams-super-bowl-ad,
I. Papadopoulos and C. Kouklougioti, “The influence of culture on
attitudes towards humanoid and animal-like robots: An integrative
http://dx.doi.org/10.1111/jnus.12422
N. Norouzi, K. Kim, M. Lee, R. Schubert, A. Erickson, J. Bailenson,
G. Bruder, and G. Welch, “Walking your virtual dog: Analysis of
awareness and proxemics with simulated support animals in
augmented reality,” in 2019 IEEE International Symposium on Mixed
http://dx.doi.org/10.1109/ISMAR.2019.000-8
A. Xiao, W. Tong, L. Yang, J. Zeng, Z. Li, and K. Sreenath,
“Robotic guide dog: Leading a human with Leash-Guided hybrid
http://arxiv.org/abs/2103.14300
T.-K. Chuang, N.-C. Lin, J.-S. Chen, C.-H. Hung, Y.-W. Huang,
Trail-Following robotic guide dog in pedestrian environments for
people who are blind and visually impaired - learning from virtual
[Online]. Available:
S. Saegusa, Y. Yasuda, Y. Uratani, E. Tanaka, T. Makino, and J.-Y. J.
Chang, “Development of a Guide-Dog robot: Leading and
recognizing a Visually-Handicapped person using a LRF,” Journal of
Advanced Mechanical Design, Systems, and Manufacturing, vol. 4,

